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In the seventeenth century, natural histo-
rians such as Galileo, Antonie van Leeu-
wenhoek and Robert Hooke learned to 

grind lenses and make the first microscopes, 
revealing the hidden landscapes of life. They 
saw for the first time the cells in cork, blood 
and other tissues, and van Leeuwenhoek found 
swimming ‘animalcules’ in dental plaque and 
observed the movement of sperm. 

Physicists and engineers are now trying to 
bring about a similar shift in perspective for 
microscopy. In most pathology labs, doc-
tors diagnose diseases by poring over tissue 
slices on glass microscope slides — classifying 
tumours, for example, based on subtle visual 
cues that are difficult to quantify. But this is 
starting to change. Just as lenses once revealed 
vistas that were previously invisible to the 
human eye, so software is opening up a new 
window on biology.

The latest digital tools make it possible to 
do a visual search in microscopy images, auto-
mate diagnosis, and sync image data with the 
genomic profiles of tumours. Some researchers 
are even doing away with lenses altogether, 
creating computational microscopes based 
on inexpensive hardware that could be used 
for point-of-care diagnostics, particularly in 
poor areas with few doctors.

BIG DATA
Pathology has remained stubbornly analogue 
and qualitative, however. The experienced 
pathologist’s main tools are glass slides, a com-
pound microscope whose design has hardly 
changed in more than 200 years, and eyes that 
have seen thousands of tumours. “Most of a 
pathologist’s medical decisions are based on 
morphology,” the structural details of cells 
and tissues revealed under a microscope, says 
David Rimm, a pathologist at the Yale School 
of Medicine in Connecticut.

Just because a method is old is no reason to 
abandon it, of course. But advocates of digital 
pathology worry about inconsistencies that 
can lead to false negatives and misdiagno-
ses. Experienced pathologists are better than 
younger ones at identifying rare tumours, but 
they often disagree with one another and even 
with their own assessment of the same sample 
from weeks before. 

One hurdle to digitizing clinical microscopy 
is the size and complexity of the images, says 
Metin Gurcan, who specializes in biomedical 
informatics at Ohio State University and was 
an early advocate of digital pathology. First, 
a biopsy is sliced into sections and placed on 
multiple slides. A digital image of a single slide, 
magnified under the microscope, has about 10 
billion pixels and requires about 30 gigabytes 
of memory. A typical prostate biopsy, for 
example, uses more than 20 slides and needs 
about 600 gigabytes.

That’s a lot of information for pathologists to 
scan through — and a lot of data for software 
to sift. “The number and type of cells found 
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The computer  
will see you now
From image-analysis software to lens-free microscopes 
that fit on a mobile phone, new tools are providing 
pathologists with clearer and more informative images. 
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Will machines be able to judge a patient’s prognosis? This prototype microscope aims to do part of the job.
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in these images is mind-boggling,” Gurcan 
says. One way to deal with this complexity is 
to use software that learns to recognize things 
in images the same way people do, but faster 
and more consistently.

VISUAL LEARNERS
Just as people learn by seeing many examples, 
so can software. In 2011, Harvard Medical 
School pathologist Andrew Beck built a tool 
called C-Path (for Computational Pathologist) 
by feeding learning software with images of 
breast-cancer biopsies from 248 patients, along 
with survival data1. The software learned to 
grade the severity of breast cancer and predict 
patient survival.

A human pathologist who looks at these 
biopsies under the microscope relies primar-
ily on three features specific to cancer cells to 
decide how aggressive the tumour is. Do the 
cell nuclei have an unusual shape? Are the 
cells dividing? And are the cells connecting 
with one another as normal, or are they iso-
lated? Pathologists qualitatively score each of 
these features to determine the tumour grade, 
a description of how aggressive the tumour is.

The C-Path system works by segmenting 
images into small regions called ‘superpixels’. 
It identifies cell nuclei and cytoplasm within 
each superpixel, and compares the qualities of 
each superpixel — such as colour, texture, size 
and shape — with those of its neighbours. For 
breast cancer, this comparative analysis gener-
ates features related to both a sample’s global 
structure and its fine-scale details, such as the 
average distance between the nuclei of cancer 
cells and normal cells.

After crunching the training set of images, 
C-Path came up with 6,642 features, describing 
not only the tumour cells themselves, which 
human pathologists focus on, but also the sur-
rounding connective tissue, called the stroma. 
Indeed, Beck found that the morphology of 
the stroma was a better predictor of survival 
than that of the cancer cells alone: an area of 
stroma that was uniform was associated with 
a good prognosis, whereas stroma that was 
infiltrated by epithelial cells indicated more 
aggressive cancer. Based on its analysis of thou-
sands of features, C-Path was able to predict 
patient survival more accurately than standard 
pathological analysis. Beck is now training the 
software on a broader range of samples, includ-
ing images of whole slides, and normal breast 
tissue samples.

It is possible that highly experienced 
pathologists also look for some of the thou-
sands of features spotted by C-Path but just 
can’t describe them in words. Rimm com-
pares the experience of spotting a tumour 
with recognizing your uncle in a photo. You 
can’t articulate exactly how you know he’s 
your uncle — is it his nose, eyes, clothing? 
You just know it’s him. But the computer can 
quantify features in an image, and the analysis 
is repeatable.

Richard Levenson, a pathologist at the Uni-
versity of California, Davis, says that software 
such as C-Path has the potential to replace 
pathologists in assigning grades to tumours. 
Others believe that the right place for software 
is as an aide to help physicians navigate large 
digital images in real time — a second set of 
very sharp, superhuman eyes. Ulysses Balis, a 
specialist in pathology informatics at the Uni-
versity of Michigan in Ann Arbor, is develop-
ing this latter kind of tool: an all-purpose visual 
search program called SVIQ.

Balis demonstrates SVIQ with a digital 
image of a slice of colon adenocarcinoma. He 
can bring up different fields of the image and 
zoom in and out. If he finds something inter-
esting — such as a cell that appears to be divid-
ing — and wants to see if there are other similar 
features in the image, he clicks a ‘scan’ button 
and the software highlights all the parts of the 
image that look similar2. In this case, all the 
dividing cells turn red. The concept is similar 
to smartphone apps such as Google Goggles or 

TinEye, which allow a user to upload an image 
to find out what it is and where you might 
find more like it. Balis demonstrates the sys-
tem from his laptop; the image analysis takes 
about 10 seconds. “This is the simplest possible 
search structure for a two-dimensional image,” 
he says. “It’s a good quick-and-dirty tool.”

The SVIQ software can help pathologists 
find sites of interest in the visually over-
whelming landscape of a digital slide. Whereas 
C-Path is designed to make diagnostic deci-
sions, SVIQ is a way to make digital pathology 
images more user friendly — and to extract 
information from them quickly. Jason Hipp, 
who works on pathology informatics at the 
National Cancer Institute in Bethesda, Mary-
land, uses SVIQ to quantify features over an 
entire slide. Instead of scoring the number of 
cells that are dividing in a few visual fields, 

as pathologists do, he says, SVIQ can count 
every single dividing cell in the entire tissue 
slice. “When we have to count and measure, it’s 
time consuming,” he says. Using SVIQ could 
speed up the pathologist’s work and provide 
more morphological data.

One of Hipp’s research goals is to integrate 
SVIQ into the process of screening patients for 
cancer clinical trials. This often starts with a 
genetic test to find eligible patients. However, 
for tumours that are dispersed, it can be diffi-
cult to find enough cancerous tissue to perform 
the genetic screen, as the cancer’s genetic sig-
nal can be lost in the noise from normal cells. 
It’s also difficult to do genetic tests on samples 
taken by needle biopsies, which are less inva-
sive but produce less tissue to work with, says 
Hipp. In these cases, pathologists have about 25 
minutes after taking a biopsy from the freezer 
to identify and hand-dye cancerous portions 
of a tumour slice before it deteriorates. A laser 
is used to remove the undyed sections, leaving 
enriched cancer cells for genetic screening.

The SVIQ software can help to digitize this 
entire process. A pathologist finds an area of 
the image where there are cancer cells, uses 
SVIQ to highlight the rest of the cancer, and 
this map is then sent to the laser cutter. The 
process takes just 5 minutes. 

At the Institute of Cancer Research in Lon-
don, bioinformatics researcher Yinyin Yuan 
aims to map all the cell types in a tumour 
alongside their gene expression data. “The 
different cell populations in a tumour create a 
complex landscape that is an obstacle to accu-
rate diagnosis,” she says. A sequencing study 
that samples part of a tumour cannot capture 
the full picture: it blurs the role played by sup-
port cells and misses the heterogeneity of the 
cancer-cell population. These issues affect 
patients’ prognoses and how they will respond 
to different kinds of therapy.

In 2012, Yuan developed software to clas-
sify the identity and distribution of each of the 
million or so cells from 300 whole-tumour 
slides of breast-cancer biopsies, and then 
integrated this with other ‘–omics’ data. A 
human pathologist would take too long to go 
through so many cells in this manner, but a 
cluster of 100 computing cores, each with the 
power of a PC, can do the job overnight. The 
output from Yuan’s software3 is not an image, 
but data, analysed and collated with other data 
about the tumour. Yuan found that patients 
with immune cells that infiltrated the tumour 
had a better prognosis, and this prediction was 
strengthened when the image data were cou-
pled with gene expression data. This result is 
not obvious to the eye of a pathologist staring 
at a slide and glancing at a list of gene expres-
sion data, but it becomes clear when Yuan’s 
software analyses the image. Yuan is now 
expanding the project to study ovarian and 
lung cancer.

“What’s happening in medical imaging is 
similar to what happened in astrophysics,” 

Raw data of a ×2 objective lens (top) before being 
rebuilt as a high-resolution image (bottom).
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says Yuan. When astronomers got access to 
powerful telescopes and digital images, they 
didn’t insist on counting every star — they 
let computers take over such tedious tasks. It 
should be the same with digital microscopes 
and cells, she says.

MATHEMATICAL LENSES
Using software to analyse digital images will 
make the pathologists’ job easier. But it will 
also lead to new kinds of hardware. Today, 
creating digital microscopy images means 
scanning microscopy slides, and this is slow 
and expensive. Researchers are now build-
ing microscopes that can do both jobs, rely-
ing more on the power of software and less on 
lenses and other expensive hardware. 

Slide scanners take multiple images, 
mechanically repositioning the slide under 
a microscope each time and then stitching 
the images together. “Mechanical scanning 
is slow,” says Changhuei Yang, who develops 
microscope technologies at the California 
Institute of Technology in Pasadena. Because 
of their expense, these scanners are not typi-
cally found in community hospitals. Yang’s 
solution is to increase the field of view and 
resolution of conventional microscopes. In 
July 2013, Yang hacked a low-resolution light 
microscope to create a high-resolution micro-
scope with a wide field of view that can create 
whole-slide images with cheap hardware4. In 
conventional microscopes, low-power lenses 
provide a wide field of view at the expense 
of resolution; high resolution only occurs 
in small fields of view, hence the need for 
mechanical scanning. Yang’s computational 
microscope can image an area as large as 
120 square millimetres at a resolution of 0.8 
micrometres; a comparable standard micro-
scope offers a field of only 1.1 square millime-
tres at this resolution.

The trick is to use an array of light-emitting 
diodes programmed to sequentially illuminate 
the sample with three different colours of light 
from several different angles; the microscope 
records a picture each time. These images 
are then combined, picking apart the way 
the sample bent or changed the colour of the 

different light sources, to reconstruct a single, 
large-area, high-resolution image. Beck, who 
invented C-Path, says these images are compa-
rable in quality to those made with expensive 
slide scanners. It’s also more efficient, Yang 
says: “The lead time is shorter, so the num-
ber of samples a pathologist can examine can 
increase.” Yang has just started up a company, 
Clearbridge BioPhotonics, based in Singapore, 
to commercialize the technology.

Some scientists are going one step further 
and building totally lens-free microscopes. 
Aydogan Ozcan, an electrical engineer at the 
University of California, Los Angeles, is devel-
oping microscopes that are basically just light-
sensing electronic chips of the kind found in 
consumer electronics, but altered to cope 
with wet biological samples. The fancy part is 
Ozcan’s software, which does the same thing 
as a physical lens: it transforms blurry inter-
ference patterns into focused images of cells. 
His compact microscopes5 reveal the same 
details as those with lenses — those made 
with state-of-the-art chips have a resolution 
of hundreds of nanometres, clear enough to 
reveal the nuclei of cells. Sample preparation 
is similar to that for conventional microscopy.

The components needed to build these 
microscopes cost just a few dollars, and the 
calculations can be performed by the proces-
sors found in mobile phones. In fact, for dem-
onstration purposes, Ozcan has built several 
microscopes attached to mobile phones. “We 
want to empower point-of-care offices or small 
clinics to work like a hospital lab,” says Ozcan.

He is also experimenting with crowd-
sourcing diagnostics. He uploaded the images 
of blood cells made by his microscopes to 
an online game (go.nature.com/mnmsmy) 
that teaches non-experts to recognize cells 
infected with malaria. The same images are 
shown to many different players, and by 
statistically combining the answers — after 
removing those clearly trying to upset the 
system — Ozcan’s software generates the 
same diagnosis as professional pathologists 
99% of the time6. The idea isn’t to ‘gamify’ 
pathology — although the games might 
serve as training tools for medical students 

and lab technicians. Eventually, Ozcan says, 
smart software will be able to take over from 
human pathologists. In the meantime, says 
Ozcan, “I think we’ll see hybrid modalities 
like this before machine learning takes over 
completely.”

Innovations in computing are set to trans-
form the field of pathology, says Alan Nelson, 
a physicist and chief executive of VisionGate, 
a company based in Phoenix, Arizona, that is 
developing three-dimensional imaging for the 
automated detection of cancer cells in sputum 
and blood. “A machine doesn’t give an opinion 
— it can produce data and absolute diagnosis 
based on statistics,” he says. The system could 
increase screening rates and help patients get 
the right treatment sooner. 

Nelson previously was the lead inventor of 
the only automated cancer screening test cur-
rently on the market. His cervical cancer test, 
developed at his company NeoPath, received 
approval from the US Food and Drug Admin-
istration in 1996 and is now marketed by 
Becton Dickinson. This test uses a processor 
that is custom built for the specific problem 
of spotting cancer cells in pap smears. The 
machine is loaded with hundreds of slides that 
are scanned automatically all day. 

Today’s computers are capable of much 
more. Nelson says that microscopes aided by 
software are now showing biologists and doc-
tors things they’ve never seen before. Ozcan’s 
lens-free microscopes have revealed new pat-
terns of helical motion in sperm, and Vision-
Gate’s three-dimensional images can show 
pathologists hundreds of previously unseen 
features. “We can see the texture of the inside 
of the nuclear surface of a lung cancer cell, and 
measure the length of the short arm of chromo-
some six,” Nelson says. “My god, it’s beautiful!”■

Katherine Bourzac is a freelance science 
writer based in San Francisco, California.
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Breast cancer image at X200 magnification (left) is broken down into superpixels (black) by an algorithm before it predicts the patient’s prognosis.
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